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COMMENT 

On the soliton generation in optical fibres 

Yuri S Kivshar 
Institute for Low Temperature Physics and Engineering, Ukrainain SSR Academy of 
Sciences, 47 Lenin Avenue, Kharkov 310164, USSR 

Received 24 August 1988 

Abstract. This is a comment on a recent paper by Burzlaff. His paper is devoted to the 
investigation of optical soliton generation for special input pulses within the framework 
of the non-linear Schrodinger equation. This comment demonstrates that the main result 
by Burzlaff, namely the threshold condition for soliton generation, may be obtained in a 
general form for any initial pulse with a constant phase (and its Galilei transformation). 
In particular, our general result includes the Burzlaff results. We note also that the formula 
obtained is applicable to the sine-Gordon equation with a special type of initial condition. 

In a recent paper by Burzlaff (1988a) the generation of optical solitons from two 
families of initial envelope functions was discussed. He found that, for a purely 
imaginary initial envelope function of width a and height b, the soliton number of 
soliton bound states is an integer smaller than ;+ ab/ T (this result was obtained earlier 
by Manakov (1973)), and for the initial envelope function ifl exp(-alxl) that is equal 
to the number of intersections of the Bessel functions 5-1/2 and ztJIl2 below p / a ,  
which is an integer smaller than ; + 2 f l / a ~ .  The main result by Burzlaff for the 
above-mentioned input pulses may be rewritten as follows: the soliton number N is 

N = ( ; + F / ~ )  (1) 

where 

and ( .  . .) denotes an integer smaller than the argument. In his recent report Burzlaff 
(1988b) also considered the super-Gaussian initial pulse, which describes the real laser 
pulse: 

u(x, O)=A,exp[-;(l - i a ) ( x / c ~ ) ’ ~ ]  (3) 

and obtained some analytical results for it. 
Our comment aims to obtain the threshold condition of soliton generation (1) and 

(2) for a rather wide class of initial pulses including (3) at a = 0. Our result connects 
the envelope of the input pulse with the number of generated solitons that should help 
to choose or build the laser best suited to injecting solitons into optical fibres at lowest 
cost. 
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It is well known that the normalised envelope of an electric field in a monomode 
optical fibre, denoted as U, satisfies the non-linear Schrodinger ( NS) equation 

a u  a2u  
at ax2 

i -+-+21u12u = o (4) 

where x and t are the normalised coordinates along the fibre and the time in the group- 
velocity reference frame, respectively. Input pulses will be generated on the edge of 
the fibre, i.e. at t = 0. Thus, to investigate the pulse propagation along the fibre, one 
should solve the Cauchy problem for the NS equation (4). 

According to the inverse scattering technique ( IST), to find which type of initial 
envelope function generates solitons one has to investigate the eigenvalue Zakharov- 
Shabat problem (Zakharov and Shabat 1972): 

at,bl/ax = iAt,bl +iu(x, 0)t,b2 

a~,b~/ax = -iht,b2+iu*(x, O)t,bl 

with u(x, 0) (which falls off fast enough at x = *a) being the initial condition to (4). 
Each discrete eigenvalue A = t + i v  corresponds to a solit.on with amplitude 277 moving 
with velocity -45 (see the notations by Zakharov et af (1980)). The important 
information about soliton solutions is contained in the so-called Jost coefficients a ( A )  
and b(A) ,  the scattering amplitudes related to the spectral problem ( 5 ) .  In particular, 
the zeros of a ( A )  are the discrete eigenvalues of the spectral problem ( 5 ) .  Therefore, 
to obtain information about solitons one has to find the Jost coefficient a ( A ) .  

Let us consider the special family of the initial potentials 

u(x, 0) = ~ ( x ,  0) eis ( 6 )  

where U(x, 0) is a real function and S (Os 6 < 2 ~ )  is an arbitrary constant. As was 
mentioned in the paper by Burzlaff (1988a), if the potential u(x, 0) has eigenvalue 
A = f + i ~ ,  then the Galilei transform 

u'(x,O)+ u(x,O) exp(-iVx)= U(x,O) exp(-iVx+iS) 

has eigenvalue [+ V/2+i77. Therefore, solving the eigenvalue problem for u(x, 0) 
yields a solution for the whole family of Galilei transformations as well. So we can 
concentrate on u(x, 0) itself and determine its discrete eigenvalues to formulate the 
threshold condition for soliton generation. Moreover, it is easy to prove that the 
transformation 

leads to the most simple eigenvalue problem 

dVl/dx = iAYl +iU(x, 0 ) q 2  

dY2/dx = - ihq2+iU(x ,  O)Yl 
( 5 ' )  

with a real initial potential U(x, 0). The eigenproblem ( 5 ' )  is the same as in the theory 
of the exactly integrable sine-Gordon (SG) equation a2u/at2-a2u/ax2+sin U = 0, with 
the initial conditions u(x, 0) = 0, du(x, O) /a t  = 4U(x, 0) and A + f ( x  - 1/4x), ( 0 6  < 
CO) being the spectral parameter used in the scattering problem related to the SG 
equation (see details in Zakharov et a1 (1980)). 
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As was demonstrated in the SG equation theory (Zakharov et a1 1980) the scattering 
problem ( 5 ' )  has the reduction 

'P,(x, A )  = -'P?(X, -A*) ~ Z ( X ,  A)=VT(x, -A*)  

and 

U (  A )  = U * (  -A *) b ( A )  = -b*(-A*) 

where a ( A )  and b(A)  are the Jost coefficients used in the IST. From the relation 
a ( A )  = U * ( - A * )  one can conclude that the zeros of a ( A )  will appear either at A = 0 or 
as pairs A I , *  = kA'+iA''. The former case corresponds to the generation of envelope 
optical solitons with the group velocity (i.e. with zero velocities in the group-velocity 
reference frame), and the latter case is related to the generation of soliton pairs with 
velocities *4A'. From a physical viewpoint it is evident that the generation of the 
single quiescent soliton will occur with a smaller energy than the soliton pair. Therefore, 
the threshold condition for the soliton generation is determined by properties of 
a(A = 0) (see also the paper by Shvartsburg and Zuev (1980), where some proofs were 
obtained t). 

The formal solution of the eigenvalue problem ( 5 ' )  with A = 0 has the form 

(7) 
1 8 q , (x ,  0) = exp(-iS(x)) C ,  U(x', 0) exp(2iS(x')) dx'+ C2 ( l:m 

q2(x,  0) = -iC1 exp(iS(x)) -VI 
where 

Using the solution (7)  we may determine the transition matrix (see, e.g., Zakharov 
er a1 1980) at A =0, i.e. in particular, we may find the Jost coefficient a(0) .  I f  we 
choose P l ( x ,  0) + 0 for x + -00, then 

a(O)= lim q2(x ,0)  
x++m 

exp(iSo) -i  exp(-iSo) U(x, 0) exp(2iS(x)) dx 

where 

S ~ = S ( X = + O O ) =  

After straightforward transformations one can obtain (cf the results by Shvartsburg 
and Zuev (1980)) 

a ( 0 )  = -iC, cos So. (9) 
The analysis of the result (9) shows that the threshold condition for the soliton 
generation may be presented as follows: 

m 

So= U(x, 0) dx 5 ~ / 2 .  

t It is strongly valid for positively defined input pulses, i.e. for U ( x ,  0) > 0 (for any x )  which is usually real 
in optical fibres. 



340 Y S Kivshar 

If the input pulse (6) generates only optical solitons with group velocities then, 
according to (9), the number of the solitons is 

N = (j+ So/7r) (11) 

(cf (1) and ( 2 ) ) .  For our input pulses (6) with U(x, 0) > 0 for any x it is valid: 

U(x,O)dx= lu(x ,O) idx=F 
m 33 L 

so that condition (11) is the same as (1). Thus, conditions (10) and (11) may be 
regarded as general conditions for the soliton generation in optical fibres from the 
above-mentioned family of input pulses. 

Let us consider, for example, the super-Gaussian envelope pulse (3). It is evident 
that our results may also be applied to this pulse at a = 0. Simple calculations yield 

s - - s ( m ) =  (2 ' / " /m)Aod(  1/2m) 

T(x) being the gamma function. Therefore, the condition for soliton generation is 
Si"'> 7r/2. For limit values of m one can obtain: = A0(+(2rr)"* and Si"= 2A00 
for m >> 1. 

In conclusion we note that the results obtained above may also be applied to the 
SG equation with a special type of initial conditions: u(x, 0) = 0, au(x, O ) / d t  # 0. In 
particular, the threshold condition for the soliton generation (in the case of the SG 

equation such an initial pulse may generate either pairs of SG kinks with opposite 
polarities or SG breathers (see Zakharov et a1 (1980))) is 

au(x,o) 
dx 2 2rr. I, at 

I am indebted to J Burzlaff for having sent an offprint of his paper and a copy of his 
report. 
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